Metabolism
Inhibitors of Aromatic Amino Acid Biosynthesis
This lesson will detail the biochemical mechanisms that are affected by herbicides which inhibit a plant’s ability to synthesize amino acids. The significance of amino acids and proteins will also be described. The herbicide glyphosate, will be studied at length, including the advances made by biotechnology.
Inhibidores de la Síntesis de Aminoácidos Aromáticos
En esta lección se detallarán los procesos bioquímicos que son afectados por los herbicidas que inhiben la síntesis de aminoácidos en las plantas. Se describirá también la importancia de los aminoácidos y las proteínas. De igual manera, se presentará un estudio detallado del herbicida glifosato [N-(fosfonometil)-glicina], incluyendo los avances hechos por la biotecnología.
Inhibitors of Branched Chain Amino Acid Biosynthesis
Herbicides that inhibit the production of the branched chain amino acids valine, leucine and isoleucine are used for total vegetation management and selective weed control in a wide variety of crops. There are currently four different chemical families that share this MOA. Before the development of glyphosate-tolerance crop technology, branched chain amino acid inhibitors were the mainstay for several major row crops. While this is still a very important herbicide MOA, the major increase in herbicide resistance weeds since 1980 has been the direct result selection pressure from these herbicides. There are currently more weed species resistant to branched chain amino acid inhibitors than any other herbicide MOA.
Metabolism of Herbicides or Xenobiotics in Plants
This lesson will take an in depth view of how plants handle foreign chemicals (xenobiotics) such as herbicides. It will discuss the three main phases that plants use to handle toxic chemicals, which enzymes are involved in these biochemical conversions, how these processes help protect crops again phytotoxic chemicals and consider the importance of these processes to successful weed management.
Protein Detection in Plants
This lesson will focus on molecular principles involved in the detection of biotechnology derived proteins in crops, using the lateral flow ELISA.